Amiri, M. J., Bahrami, M., & Dehkhodaie, F. (2019). Optimization of Hg (II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies. Journal of Water and Health, 17(4), 556-567.
Bahrami, M., Amiri, M. J., & Dehkhodaie, F. (2021). Effect of different thermal activation on hydroxyapatite to eliminate mercury from aqueous solutions in continuous adsorption system. International Journal of Environmental Analytical Chemistry, 101(14), 2150-2170.
Bahrami, M., Amiri, M. J., & Koochaki, S. (2017). Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies. Pollution, 3(4), 539-552.
Bahrami, M., Boroomandnasab, S., Kashkuli, H. A., Farrokhian Firoozi, A., & Babaei, A. A. (2012). Removal of Cd (II) from aqueous solution using modified Fe3O4 nanoparticles. Rep. Opin, 4(5), 31-40.
Bakranov, N., Zhabaikhanov, A., Kudaibergenov, S., & Ibraev, N. (2018). Decoration of wide bandgap semiconducting materials forenhancing photoelectrochemical efficiency of PEC systems. J. Phys.: Conf. Ser. 987 012028.
Bartonova, L., Ruppenthalova, L., & Ritz. M. (2017). Adsorption of Naphthol Green B on unburned carbon: 2- and 3-parameter linear and non-linear equilibrium modelling. Chinese Journal of Chemical Engineering 25: 37-44.
Behnam, H., & Farrokhian Firouzi, A. (2022). Application of linear and non-linear kinetic and isotherm models for evaluation of lead removal efficiency from aqueous solutions using biochars. Iranian Journal of Soil and Water Research. 10.22059/ijswr.2022.333585.669124
Benmessaoud, A., Nibou, D., Mekatel, E. H., & Amokrane, S. (2020). A comparative study of the linear and non-linear methods for determination of the optimum equilibrium isotherm for adsorption of Pb2+ ions onto Algerian treated clay. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), 153-171.
Choong Thomas, S.Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217: 139-166.
Cornejo, L., Lienqueo, H., Arenas, M., Acarapi, J., Contreras, D., Yanez, J., & Mansilla, H.D. (2008). In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environmental Pollution, 156, 827-831.
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
Gupta, S.M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Sci Bull; 56(16), 1639.
Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water research, 40(1), 119-125.
Khalili Arjaghi, Sh., Ebrahimzadeh Rajaei, G., Sajjadi, N., Kashfi al-Asl, M., & Fataei, A. (2021). Removal of metallic mercury and arsenic contaminants from water using synthesized iron oxide nanoparticles from Sinensis Ramalina lichen extract. Journal of Health. 11 (3): 408-397.
Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and purification Technology, 58(3), 359-366.
Mallakpour, S., & Tabesh, F. (2019). Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: Comparison of linear and non-linear forms of different adsorption isotherm and kinetics models. International journal of biological macromolecules. 133, 754-766.
Nazari, A., Nakhaei, M., and Yari, A. (2019). Removal of Arsenic Contaminant Using Titanium Dioxide (Anatase) Nanoparticles in Aqueous Environment Journal of Qom University of Medical Sciences. 13 (8): 62-72. [in Persian]
Praveen, K., Abinandan, S., Natarajan, R., & Kavitha, M. S. (2018). Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Brazilian Journal of Chemical Engineering, 35, 489-496.
Rahmani, A. R., Ghaffari, H. R., and Samadi, M. T. (2010). Removal of arsenic (III) from contaminated water by synthetic nano size zerovalent iron. World Academy of Science, Engineering and Technology, 62, 1116-1119.
Rao Karri, R., J. N. Sahu and N. S. Jayakumar. 2017. Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. Journal of the Taiwan Institute of Chemical Engineers, 80, 472-487.
Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and environmental safety. 112, 247-270.
Sohrabi, M.R., Amiri, S., Masoumi, H.R.F., & Moghri, M. (2014). Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology. J Ind Eng Chem. 20(4): 2535-2542. [in Persian]
Shahbazi, A., Zahedinia, S., & Hashemi, S.H. (2017). Evaluation of the efficiency of poplar soil in removing methylene blue from aqueous solutions; Isotherm, kinetics and thermodynamics studies. Modares Civil Engineering.16(2), 161-172. [in Persian]
Torki Harchegani, R., Mirghaffari, N., & Soleimani Aminabadi, M. (2019). Comparison of Linear and Nonlinear Kinetic Models and Adsorption Isotherms of Zinc from an Aqueous Solution by Biochar. JWSS-Isfahan University of Technology, 23(2), 189-200. [in Persian]
World Health Organization. (2001). Arsenic in drinking water. Fact sheet No. 210. Retrieved: January. 12:2007.
Weng, X., Huang, L., Chen, Z., Megharaj, M., & Naidu, R. (2013). Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crops Prod. 51:342-347.
Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ. 466:210-213.
Wen, D.H., Ho, Y.S., & Tang, X.Y. (2006). Comparative sorption kinetic studies of ammonium onto zeolite. J Hazard Mater. 133:252-256.
Zheng, H., Han, L.J., Ma, H.W., Zheng, Y., Zhang, H.M., Liu, D.H., & Liang, S.P. (2008). Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater. 158:577-584.